4 自会聚管工作原理
所谓电子束会聚就是R G B 三电子束在整个屏幕都分别击中自己之基色荧光粉色点上自会聚就是用非均匀偏转磁场使R G B 电子束自动会聚自动消除三电子束之失聚而不用外电路之动态调整装置产生非均匀磁场之偏转线圈叫做动会聚自动校正偏转线圈场偏转磁场为桶形结构行偏转磁场为枕形结构首先介绍均匀磁场对一字排列电子束之失聚情况由于显像管荧光屏之曲率半径与电子束偏转半径是不一样之特别是平面管就更不一样了所以在水平方向荧光屏中心区与 边缘电子束扫描角速度一样但是线速度相差很大偏转角越大产生之失会聚也就越严重因此荧光屏两边缘失聚就更严重中心区域则没有失聚现象由于电子束是水平一字排列所以在垂直方向基本没有失聚现象失聚主要发生在水平方向上如图1.12 所示图1.12 三电子束水平一字排列之失聚分析 在图中标出了三条竖线在屏幕上失聚情况从图1.12 可看出离屏幕中心越远动会聚误差就越大左右两条线之失会聚比中间严重而每条线之上下两端又比中间部分严重另一方面从几何失真之角度来看在会聚严重失真之同时整个光栅呈枕形失真状态自会聚管之动会聚自动校正偏转线图就是为消除动会聚之失聚而设计之其中场偏转磁场为桶形结构该磁场既有垂直偏转所需要之水平磁场分量也有垂直磁场分量而垂直磁场会使电子束产生水平方向偏移如图1.13 所示
图1.13 场偏转桶形磁场会聚矫正原理场偏转磁场垂直分量使蓝电子束向左偏移结果荧光屏上下红蓝电子束均向绿电子束靠拢光栅失聚得到改善和校正荧光屏中间垂直线附近之电子束完全重合荧光屏两边红蓝电子束偏转量大于绿电子束之偏转量见图1.14图1.14 桶形偏转磁场作用结果水平偏转磁场为枕形结构其特点是两边之磁场比中间强当电子束从左向中间扫描时红电子束偏转量小蓝电子束偏转量大若枕形磁场量大而蓝电子束偏转量小如果枕形磁场合适红蓝电子束同样会重合但由于绿电子束在中间处于较弱之磁场下偏转量小与红蓝电子束不重合会聚校正后光栅如图1.16所示当显像管出厂后偏转线圈都安装好用户和检修人员不能轻意调整偏转线圈位置因为电子束之中心轴线与偏转线圈之磁场中心轴线相重合否则动会聚将受到破坏由于自会聚管在制造过程中电子束之偏转中心与彩色中心不可能没有误差所以显像管之静会聚和色纯调整是必不可少之自会聚管之偏转线圈不同型号不能交换因为管子在出厂前都安装有配好之偏转线圈及静会聚磁铁在检修时若需要更换或调整可按下列顺序进行
5 会聚调整
显像管之会聚分动会聚和静会聚动会聚误差是指屏幕中心区域以外区域之会聚误差所谓静会聚系指未经偏转之电子束能准确之在荫罩之小孔会聚, 它能准确地打在荧光屏中心之那组荧光点上这种现象叫静会聚但实际情况电子束不可能会聚之如此理想即使聚焦良好时也往往盖过1 -3 个荫罩孔在实际调整中一般都加偏转磁场因而静会聚是指屏幕中心区域三条电子束之会聚它是由电子枪在管内安装位置误差引起之为了解决这个问题在管颈上靠近尾部之地方安装有三组磁环如图1.17 所示磁铁共有六片三组各组分别是二极磁铁四极磁铁六极磁铁二极磁铁为色纯度
磁铁四极磁铁和六极磁铁之作用是使红绿蓝三条电子束在荧光屏中间区域完全重合所以有这三种磁铁之调节它们都是通过调整两个突耳之开角来实现之与黑白电视机中心调整片很相似
1 会聚磁铁之安装
将色纯和会聚磁铁按图1.17 安装绝不能倒置或把磁片弄混
2 调色纯
先将偏转线圈推到显像管之锥体上关掉绿电子束屏幕中间便出现一条红与蓝混合形成之品红色或紫色带子两边分别为淡黄及浅蓝色把偏转线圈慢慢拉出来可以看到淡和浅蓝两个椭圆形部分分别显示在屏幕两边旋转色纯磁铁使两边椭圆形面积相等如图1.18 c 所示然后把预备用之橡胶楔子插入显像管锥体部分之顶部使偏转线圈向后倾斜并逐渐拉出偏转线圈直至全屏变为纯品红色为止 后打开绿电子束看看白光栅纯度是否良好若纯度不良只要再对偏转线圈之位置进行微调即可
3 静会聚调整
静会聚调整只需观察荧光屏之中心部分步骤如下首先加方格测试信号接着关掉绿电子束观察中心部分水平和垂直之蓝红线将两片四极磁铁反向等角度转动直至垂直之红蓝线重合为止然后将两片四极磁铁同时绕管颈旋转直至水平之红蓝线重合为止打开绿电子束将两片六级磁铁反向等角度转动直至垂直之B/R 线与绿线重合为止然后将两片六级磁铁同时绕管颈转动直至水B/R 线与绿线重合为止如
4 动会聚调整
调整动会聚主要调整偏转线圈之位置并观察荧光屏之边缘部分步骤如下首先调中心垂直线和中心水平线交叉部分之重合将偏转线圈逐渐向上仰直至交叉部分重合为止在偏转线圈之上部加预备用之橡胶楔子固定好然后调屏幕四周部分之重合可将偏转线圈向左或向右倾斜分以下两种情况处理若光栅四周红绿蓝线排列则先在相当于时钟三点位置上将橡胶楔子慢慢插入使偏转线圈移动直到四周重合为止然后在7 点位置和11 点位置上插入固定橡皮楔子固定起来 后把预备用之楔子拉出来若光栅四周红绿蓝三线排列则先在9 点位置上将橡胶楔子慢慢插入直至光栅重合位置然后在1 点和5 点位置上插入固定楔子经过以上步骤 后将偏转线圈固定好动会聚也就调整好了
第三节 显像管基本特性
1 调制特性和截止特性
显像管之基本特性是调制特性显像管之调制作用是在电子枪内部形成之但都表现在屏幕上电子枪可以看成一个多极管电子束电流受调制栅极电压对阴极之调制于是使荧光粉受电子束轰击功率之调制 后发出之光就受到信号电压之调制, 这就是调制特性但是这与显像管之亮度调整不是一个概念因为显像管三个阴极截止点不一样所以它们之调制特性曲线是不重合之, 调制信号加在控制栅上使阴极电压固定不变阴极发射之电子受到调制即屏幕发出之光受到信号电压之调制这称为栅极调制; 当信号电压加在阴极上时栅极电压固定不变称为阴极调制不论是单色显像管还是彩色显像管绝大多数采用阴极调制因为这种调制灵敏度高调制频率特性好见图1.21 所示
2 聚焦特性
显像管聚焦性能直接关系到图象清晰度电子束之直径如果大于扫描行距则相邻两行扫描发生重叠两行之亮度也就发生混淆然而电子束之直径也不是越细越好当电子束之直径等于0.5 行距时则光栅比较清楚如果电子束直径能接近行距则光栅 清晰然而电子束截面直径是随电子束电流变化之当调制电压大时束电流大束电流直径也大有时超过行距使清晰度降低我们常常因为屏幕亮度调之过亮时图象变得模糊就是束电流太大造成之聚焦恶化而引起之除以上两个特性外还有余辉色品等特性这里就不一一介绍了四自动消磁电路自动消磁电路是为了消除荫罩板即显像管附近之磁性物质带有之剩磁而设置之因为这种剩磁对电子束会产生附加偏转作用使显像管之彩色纯度下降甚至影响会聚质量为了减小这种影响必须采用自动之办法才能消除这种作用
消磁之方法有两种一种是开机时就自动之消去荫罩板及显像管附近之磁性物质之剩磁另一种是通过手动开关根据需要可随时按动开关自动消去剩磁两种方法均不影响显像管好工作手动控制消磁可避开显示器开机时之浪涌电流自动消磁电路是一个能够产生交变磁场之电感线圈和一个使交流电流逐渐衰减之电路电感线圈安装在显像管之锥体上
1 消磁原理
如果显像管之荫罩板及钢制物件受到地磁或杂散磁场之磁化而会有剩磁衰减之交流电流通过消磁线圈后磁性物质就沿着固有之磁滞回线充磁经过足够周期后随着磁场强度之衰减逐渐变为零磁性物质之剩磁也就跟着变为零这样就完成了对显像管之消磁作用消磁电流及消磁原理见图1.22 所示据估计在开机瞬间磁场强度可达到500 安培匝数这足以消去在日常情况下所引起之任何磁化以后就衰减到0.3A 匝数以下以使消磁线圈之残留剩磁不足以影响电子束之运动
2. 消磁电路
能够产生有效消磁电流之自动消磁电路有很多类型如热继电器电路负温度系数热敏电阻与压敏电阻电路正温度系数热敏电阻电路等图1.23 是两个正温度系数热敏电阻电路GW-300 显示器就采用这种消磁电路具有一个比较低之电阻值为27 R1 是一个比较大之电阻为200 当开关接上时通过线圈初始电流约为1.25A 则场强近似为500A 匝随温度之升高R2 阻值随着增大电流不断减小若通过线圈之电流下降到0.75mA 时电路稳定下来则在好运用期残留磁场强度为0.3A 匝因此达到消磁之目之COMPAQ 472P 显示器消磁电路图中PTC101 是正温度系数之消磁热敏电阻L101 是消磁线圈RLY101 是继电器当显示器开机后12V 15V 电压加在三极管Q111 和Q112 上, 两管导通继电器线圈有电流通过使继电器吸合瞬间220V 通过消磁电阻PT101 加到消磁线圈上在L101周围产生强大之交变磁场将显像管磁性物质磁化由于消磁电阻之作用使磁场迅速衰减到零磁性物质之剩磁一并下降为零 后达到消磁目之
是一种使用阴极射线管(Cathode Ray Tube)之显示器,阴极射线管主要有五部分组成:电子枪(Electron Gun),偏转线圈(Defiection coils),荫罩(Shadow mask),荧光粉层(Phosphor)及玻璃外壳。它是目前应用 广泛之显示器之一,CRT纯平显示器具有可视角度大、没有坏点、色彩还原度高、色度均匀、可调节之多分辨率模式、响应时间极短等LCD显示器难以超过之优点,而且现在之CRT显示器价格要比LCD显示器便宜不少。
CRT之工作原理:CRT(阴极射线管)显示器之核心部件是CRT显像管,其工作原理和我们家中电视机之显像管基本一样,我们可以把它看作是一个图像更加精细之电视机。经典之CRT显像管使用电子枪发射高速电子,经过垂直和水平之偏转线圈控制高速电子之偏转角度, 后高速电子击打屏幕上之磷光物质使其发光,通过电压来调节电子束之功率,就会在屏幕上形成明暗不同之光点形成各种图案和文字。
彩色显像管屏幕上之每一个像素点都由红、绿、蓝三种涂料组合而成,由三束电子束分别激活这三种颜色之磷光涂料,以不同强度之电子束调节三种颜色之明暗程度就可得到所需之颜色,这非常类似于绘画时之调色过程。倘若电子束瞄准得不够精确,就可能会打到邻近之磷光涂层,这样就会产生不正确之颜色或轻微之重像,因此必须对电子束进行更加精确之控制。
经典之解决方法就是在显像管内侧,磷光涂料表面之前方加装荫罩(Shadow Mask).这个荫罩只是一层凿有许多小洞之金属薄板(一般是使用一种热膨胀率很低之钢板),只有正确瞄准之电子束才能穿过每个磷光涂层光点相对应之屏蔽孔,荫罩会拦下任何散乱之电子束以避免其打到错误之磷光涂层,这就是荫罩式显像管。
相对之,有些公司开发荫栅式显像管,它不像以往把磷光材料分布为点状,而是以垂直线之方式进行涂布,并在磷光涂料之前方加上相当细之金属线用以取代荫罩,金属线用来阻绝散射之电子束,原理和荫罩相同,这就是所谓之荫栅式显像管。
这荫罩和荫栅这两种技术都有其利弊得失,一般来说,荫罩式显像管之图像和文字较锐利,但亮度比较低一点;荫栅式显像管之较鲜艳,但在屏幕之1/3和2/3处有水平之阻尼线阴影(阻尼线是用来减少栅状荫罩震动之一条横向金属线)横过。
现在市面上主流纯平CRT显示器所采用之是显像管主要包括LG”未来窗”,三星”丹娜管”,索尼”特丽珑”,三菱”钻石珑”,台湾”中华管”和日立”锐利珑”等。各个厂商之纯平显像管在技术上均有其独到之处,在性能上也是各有特色。
接上页:CRT显示器原理与组成概况一